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Extinction and Borrmann Effect in Mosaic Crystals 

BY W. H. ZACHARIASEN 

Department o f  Physics, The University o f  Chicago, Chicago, Illinois 60637, U.S.A. 

(Received 4 December 1967) 

The theory of X-ray diffraction in mosaic crystals is modified to include the Borrmann effect. The 
equations show that the Borrmann effect becomes important for strong reflections in type II mosaic 
crystals if the domain size is of the order of 10 -4 cm or larger and ifa0T>_ 1. Under these circumstances 
the integrated intensity may be enhanced by as much as a factor of two with a corresponding apparent 
decrease in the extinction effect. 

Introduction 

In a recent paper (Zachariasen, 1967, henceforth to 
be referred to as reference 1) it was shown that extinc- 
tion in a mosaic crystal reduces the integrated intensity 
of X-ray diffraction by a factor yK, the extinction fac- 
tor, as compared with the prediction of the kinematical 
theory. The expression for the extinction factor is 

y K = ( 1  + 2NK) -1/2 , 

XK = r*KZQo2 -1T , 

r*=r/l,/1 +(r/2g) 2 , (1) 

= e22FH I 2 /sin 20 Q0;:' m c  2 V [ / 

T =  - A - I d A / d l z  . 

r is the mean radius of a perfect crystal domain in the 
specimen, and A(/t) is the transmission factor. It is 
assumed that the observations are made in the plane 
of incidence, that r,~ • and that the misalignment of 
the domains obeys an isotropic Gaussian distribution 
law, W ( A ) =  ~/2g exp ( - - 2 r r g 2 d 2 ) ,  where A is the angu- 
lar deviation from the mean orientation. 

The quantity K =  1 for the normal and K= [ cos 201 
for the parallel component of polarization. The ap- 
propriate expression for y, when the incident beam is 
unpolarized, accordingly becomes 

Y = ( Y l  + KZYK)/( 1 + g2) ,  (2) 

where the subscript specifies the value of K. 
This intensity formula has been used successfully to 

interpret experimental data obtained with small crystal 
spheres showing high extinction, but small absorption 
effects (Zachariasen, 1968). 

In deriving and using equations (1) and (2) it was 
tacitly assumed that the effective absorption coefficient 
/z was given by p=/~0 = V -~ Z/aaj, where la. I is the 

J 
atomic absorption coefficient of the j th  atom in the 
unit cell. This assumption implies that the Borrmann 
effect (Borrmann, 1941) is negligible, and the sup- 
position is not valid when the extinction is high and 

simultaneously/~0T> 1. Accordingly equations (1) and 
(2) need to be modified to include the Borrmann effect. 

The basic equations of the theory do not predict the 
value of the absorption coefficient/z. The first task of 
this article is therefore to find the correct expression 
for/z, and the next section is devoted to this problem. 

The absorption coefficient 

The propagation of an electromagnetic wave field of 
X-ray frequency in an absorbing perfect crystal will be 
discussed in this section. The problem is precisely that 
of the dynamical theory of X-ray diffraction to which 
different approaches have been given by Darwin 
(1914a, b), by Ewald (1916a, b, 1917) and by Laue 
(1931). Absorption phenomena were neglected in the 
original formulations. However, Prins (1930) modified 
the Darwin theory to include absorption, and so did 
Kohler (1933) for the Laue theory. 

The Darwin-Prins and the Laue-Kohler treatments 
dealt specifically with crystals in the shape of infinite 
plane parallel plates. The boundary conditions ap- 
propriate for this crystal shape were applied, and the 
results for the diffraction pattern were given in terms 
of the deviation from the Bragg angle as observed out- 
side the crystal plate. 

For the present purpose of finding the expression 
for the absorption coefficient it will not be necessary 
to consider boundary conditions, and the variation of 
/t with scattering angle will be given in terms of the 
deviation from the Bragg angle as it would appear 
inside the medium. Except for the omission of bound- 
ary conditions and the use of an internal rather than 
an external variable the presentation of this section 
follows the Laue-Kohler formulation of the dynamical 
theory. As a consequence there will be considerable 
duplication of results already presented in an earlier 
treatment (Zachariasen, 1945). 

In the X-ray frequency range the polarizability per 
unit volume is ~/4rt where ~, is given by 

e222 
~u=-  z~mc 2 X[1 +(k+ir/e]-Qk. (3) 

k 
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f2e is the electron density function and ~k+iqk  the 
anomalous  dispersion correction for electrons of type 
k. Since q/ is periodic in space, it may be expanded 
in a Fourier  series, yielding 

q/=  V" q/H exp [-i2~zH. r] 
H 

e2 2 Z F1~r 
q/H = -- (4) 

rcmc 2 V 

FH= Z" (f i+A~ + if}') exp [i2~zH. r j - M j ] .  
J 

H is a reciprocal lattice vector, f~ + if}' the anomalous 
dispersion correction and exp ( - M j )  the temperature  
factor for the j t h  a tom in the unit cell. 

It  is convenient to set 

• , t •  • t •  

q/H = q/H + Zq/H , FH=F'H + IF H 

F'H= Z ( f i + A ~ ) e x p [ i 2 r c H . r j - M j ]  (5) 
J 

F H = Z" f}' exp [i2~zH. r j -  Mj] .  
J 

If  the crystal has an inversion center at the origin, 
q/H = ~H,  FH = FH,  and all four quantities q/H, q/H, FH, 
F H will be real. Since f ~ ( f i + f ~ )  it is usually, but 
not necessarily, true that  [FH[ ,~ [FH[. 

Because I q/l<~l, the expression for the dielectric 
'constant '  can be taken to be 1 + q/with terms in higher 
powers of q/neglected. The relationship between field 
d ° and displacement ~ accordingly becomes ~ =  
1(+ q/)# or # = ( 1 -  q/)~. 

The Maxwell equations for a non-magnetic dielec- 
tric ( ~  = , ~ ,  V .  ~ - - 0 )  give the following self-con- 
sistency condition for .@, 

V × [V × (1 - q/)~] = - c - 2 ~ 2 ~ / ~ t  2 . (6) 

A solution of the form .@ = D(r) exp [icoot-i2~zP0. r] 
represents a wave with wave vector P0 and an ampli- 
tude D varying with position. If D is required to have 
the periodicity of the lattice, Fourier  expansion gives 

.~ = X DH exp [iCOot - i2rCpH, r ] ,  

P H = P 0 + H ,  (7) 

PH.  DH : 0 .  

Thus the displacement field is represented as a super- 
position of plane waves with coupled wave vectors [IH. 
The third condition of equation (7) is a direct con- 
sequence of the requirement that  V .  ~ be identically 
zero. 

Substi tution of equations (4) and (7) in (6) gives 

Z q/H-Z, PHX( fJHXDL)=(k2- -[32)DH (8) 
L 

where k 0 = 2  -1. Upon scalar multiplication with D0/D0 
equation (8) simplifies to 

(fl2H-k2o)D H -  Z q/H-Lfl2HZHLDL=O, (9) 
L 

where XHL--~XLH=DH. D L / D H D L  is cosine of the 
angle between DH and DL. 

Since all quantities [(l/H-L[ <~ l, it follows that  flH "" ko, 
and one may set f lH=ko[l  + J g ]  with ]6HI <~ 1. The ex- 
pression 1 + J g  is the complex refractive index n =  
nr+ini  for the wave. Equation (9) can now be re- 
written in the form 

2 t ~ H D H - -  ,if, q / H - L X H L D L = O .  (10) 
L 

Suppose that  there is a single plane wave in the 
medium, i.e. that  D0-C0 and DL-----O for  L~ :0 .  In this 
case equation (10) reduces to 

(25o - q/o)D0 = 0 

nr = l +½V/'o , ni=½~t o . ( l l )  

The presence of an imaginary term for the refractive 
index implies absorpt ion with an absorpt ion coefficient 
# given by # = -4rc2-1n~. Hence, one has for a single 
plane wave 

J 

2eZ2 
= d", (12)  

flaJ m c  2 , 

which is the well known result. 
If the wave vector Po has a direction so as exactly 

or very nearly to satisfy the Laue-Bragg equation for 
one, and only one, lattice plane, one expects a wave 
field consisting of two plane waves. Accordingly, let 
D 0 ¢ 0  and DH¢-O with all other Fourier  components  
DL equal to zero. The set of equations (10) then be- 
comes 

(260-  ~0)D0-  ~)(,OHDH = 0 

-- q / H Z o l I D o + ( 2 6 H - -  q/0)DH=0 (13) 

and the eigenvalues are determined by the roots of the 
secular equation 

(260 - q/o) (26H-- I//0) " ~ ' X o H Z q / H ~ I I - ~  • (14) 

Imagine that  the internal Laue-Bragg equation is 
exactly satisfied when Po = Po °. Then Pn=  p0H= PO ° +  H, 
and [fl°HI = [po°+ HI = [fl°[. Hence, 6 ° = J o  °, and equation 
(14) gives 

n =  1 +}{q/0 + - Kl/q/Hq/~} (15) 

with K = l  for the normal and K = J c o s  20[ for the 
parallel component .  Henceforth,  a centrosymmetric  
crystal will be assumed, implying q/H= ~ .  If the Laue-  
Bragg equation is exactly fulfilled, one has thus 

/t----fl0 + KI tH , 

/tH = V -1 X/laj  exp [ i2nH.  r j - M j ] .  (16) 
J 

When the Laue-Bragg equation is approximately 
satisfied, one sets Po o o =PO+elflO~, where ~ is a unit 
vector such that  ~.  po ° = 0 ,  while et is a small angular 
deviation from the ideal Bragg angle. Since PH = P0 + H, 
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it follows that t ~ H = f 0 + e l  sin 20, and equation (14) 
gives 

fi0=½{~,0-Cl sin 20+ l'~,~/Kz÷(eq Sill 20) 2} (17) 

6H=½{~//0-~-el sin 20_+ I'~'~K2 + (el Sill 2 0 )  2} . 

Upon separation of real and imaginary parts one 
finds 

l/-~-,ao +__ KflItKK (1 8) 

KK = (1 + a2,~2) -I/2 

a =  sin 2 0 / K l ~ l d  . 

z 1+11 - z  2 
h:K = log e 

:rt'[' 1--,7 2 I - - V  1 --Z2 

z = b/a = 2r*K[ FHle2)t/mc 2 V sin 20.  (22) 

Values of z > l  may occur when r* and [Fn l /V  are 
unusually large. However, these represent physically 
impossible situations which arise because of the ap- 
proximate character of equation (20). According to the 
dynamical theory the maximum value of b is precisely 
a, and hence the maximum value of Y/~ is 2In. 

Table 1 gives 2"n as function of the parameter z. 

When the Bragg equation is exactly or nearly sat- 
isfied, /z is accordingly given by equation (18), while 
the value p = p o  is applicable only if there is no dif- 
fraction. 

The extinction (actor 

The basic equations for a mosaic crystal as given in 
reference 1 are 

ala 
= - ( p + 6 ) I o + 6 1 '  

~I '  
fT2 = - ( p  + 6)I' + 610 . (19) 

10 and I '  are the intensities of the incident and dif- 
fracted beams, T1 and T2 the distances of travel of the 
two beams in the crystal. The boundary conditions are: 
l 'o=Jo at T l = 0  and I ' = 0  at T2=0 where J0 is the 
incident intensity at the crystal surface. 

a(el) is the diffracting power per unit volume of the 
mosaic crystal, and, as shown in reference 1, the ap- 
proximate expression for a for spherical domains of 
radius r is 

a = 2KZQo2-ar*/(1 + b2~321) (20) 

b = 2nr*2 -1 

r* = r/l/1 + (r/2g) 2 . 

The solution of equation (19) is I0=I0exp  [ - f l ( T 1  
+T2)] and l ' = I e x p  [ - p ( T I + T 2 ) ]  where I0 and I are 
the solutions for p = 0 .  

The integrated intensity of the diffracted beam is ob- 
tained by integrating I '  over the crystal surface and 
with respect to el. 

The quantity KpKxn of equation (18) is in general 
small compared with a, and it becomes justifiable to 
replace ~¢/~ with its mean value, 2/~, over the diffracting 
power 6. 

One has 

k:K= ~ 1/1 +a2e~(1 +bZe~) -o~ 1 +b2a~ " (21) 

This integral can be evaluated, and the result (for 
b<_a) is 

Table 1. Relation o f  YK to z 

Z K K  Z K K  

0 0 0"6 0"525 
0-05 0.118 0"7 0-559 
0-1 0.192 0"8 0.588 
0.2 0"298 0"9 0"614 
0"3 0"375 1"0 2 /n=0"637  
0"4 0"435 > 1"0 2/n 
0"5 0"484 

As a second reasonable approximation let the ex- 
ponential term in the solution l ' = I e x p  [ - p ( T I +  T2)] 
be replaced by its mean value over the crystal. The 
result is 

I ' = I ( T 1 ,  Tz)A(po+_pI4K~,K) , (23) 

where A is the transmission factor. The integration re- 
quired to yield the integrated intensity can now be 
performed, and the result for the extinction factor y 
becomes 

y = A_+Ky+K/A o (24) 

y+n = [1 + 2X±K] -1/2 

X+K = r*KZQo 2-1T_-~K, 

where subscripts refer to the value of K and of the 
absorption coefficient as follows 

Subscript /t 

0 /to 
- _  

+ 1 Po + Pn~x 

- 1 /10- pH/q 

+ K Po + KltH~.K 

- K P o  - -  K ~ I I - ~ K  • 

(25) 

The two values for/1 of P0 + K p i i ~ n  and P0-Kpn-~I~ 
are equally probable. The detailed form of equation 
(24) for an unpolarized incident beam is accordingly 

y =  [A~ IY+I +A-lY-I  
+ K2(A+Ky+I~ + A-Ky-K)] /2Ao(1 + K 2) • (26) 

When ~K=0,  one has Ae:K=Ao, y + K = y K  and equa- 
tion (26) reduces to equation (2) which was given in 
reference 1. 

A C 24A - 2* 
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D i s c u s s i o n  

In discussing the final expression for the extinction 
factor y as given in equation (26) it will suffice to deal 
only with the normal polarization component for 
which K= 1. 

A necessary (but not a sufficient) condition for the 
observance of the Borrmann effect is that ~ and hence 
z be significantly different from zero. A comparison 
of the expressions for the parameters x and z [equa- 
tions (1) and (22)] shows that appreciable values of z 
can occur only when extinction is high. For a strong 
reflection ([FHI/V-~0"3 x 1024 cm -3) and reasonable ex- 
perimental conditions (2=1 A, 0=15 °) one finds 
z~0-3r*x  104cm -1. Hence, the Borrmann effect is 
negligible unless r* is at least of the order of 10 .4 cm. 

In reference 1 a crystal was defined as being of type I 
if r/2g>> 1 and of type lI if r/2g~ 1. Thus, the effect 
will be mainly confined to type II crystals for which 
r >_ 10 .4 cm. 

The expression for Pn, as given in equation (16), 
shows that PH<P0, but that lull is comparable to P0 
for strong reflections. Suppose that IUHK~--½PO (which 
is a reasonable assumption for strong reflections of 
type II crystals with r_> l0 -4 cm). If one neglects the 
relatively small difference between Y+I and Y-l, it is 
seen from equation (26) that the magnitude of the 
Borrmann effect is predominantly determined by the 
ratio (A+I+A-I)/2Ao. The value of this quantity (with 
p=Po+½Po, 0=15 °) for a spherical crystal of radius 
R as function of poR is shown in Table 2. 

As illustrated by the numbers in Table 2 it becomes 
necessary under the stated conditions to take the Borr- 

Table 2. Influence of  absorption 
and crystal radius on the Borrmann effect 

poR (A+1 + A-1)/2Ao 
0 1 "00 
0"5 1 "06 
1 "0 1 "25 
2"0 1 "77 
4.0 2.44 
6.0 2"36 

mann effect into account even when p0R_~0.5. For 
poR > 2 the effect produces an intensity enhancement 
amounting to a factor of two or more. 

The pure extinction depends upon the parameter x 
of equation (1), and it is of interest to consider the 
effect of wave length on the magnitude of the extinc- 
tion for a given reflection of a given crystal specimen. 
For small scattering angles one has xoc2T. If absorp- 
tion effects are small over the entire wave length range 
under consideration, T is approximately constant; and 
hence extinction will increase with the wave length. 
However, for heavily absorbing crystals Tocp-1. In a 
wave length region much shorter than any critical ab- 
sorption edge, one has poe). 2.8 and accordingly 
xoc2 -1-8. Extinction does in other words decrease with 
increasing 2 in heavily absorbing crystals. When the 
Borrmann effect is also taken into account, the net 
result is that the extinction factor y as given by equa- 
tion (26) has a much higher value for the longer wave 
length. 

These and other consequences of the theory are well 
illustrated by experimental data obtained with a small 
sphere of calcium fluoride using both Mo Ks and 
Cu Kc~ radiation. 

The detailed quantitative interpretation of the cal- 
cium fluoride data will be given in the following article. 

The work was in part supported by the Advanced 
Research Projects Agency under Contract SD-89. 

References  

BORRMANN, G. (1941). Physik. Z. 42, 157. 
DARWIN, C. G. (1914a). Phil. Mag. 27, 315. 
DARWIN, C. G. (1914b). Phil. Mag. 27, 675. 
EWALD, P. P. (1916a). Ann. Phys. Lpz. 49, 1. 
EWALD, P. P. (1916b). Ann. Phys. Lpz. 49, 117. 
EWALD, P. P. (1917). Ann. Phys. Lpz. 54, 519. 
KOHLER, M. (1933). Ann. Phys. Lpz. 18, 265. 
LAUE, M. VON (1931). Ergeb. exakt. Naturwiss. 10, 133. 
PRINS, J.A. (1930). Z. Phys. 63, 477. 
ZACHARIASEN, W. H. (1945). Theory of X-ray Diffraction in 

Crystals. New York: John Wiley. 
ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558. 
ZACHARIASEN, W. H. (1968). Acta Cryst. A24, 212. 


